
Using the Keystroke-Level Model to
Evaluate Mobile Phones
Trenton Schulz
Trolltech ASA
University of Oslo
trenton.schulz@trolltech.com
trentonw@student.matnat.uio.no

Abstract. Developing applications and services for mobile devices can be a challenging
task. One classic evaluation method available to desktop machines is the GOMS
Keystroke-Level Model that measures the keystrokes, mouse movements, and mental
preparation of an expert user performing a task error-free. A model can be used for
determining how long it takes to perform a task. We introduce a tool that can generate
Keystroke-Level Models and use it to evaluate some mobile phones. Examining the
models, we find useful information about the mobile devices, but there could be some
adjustments to the tool and the Keystroke-Level Model approach for generating better
models of the mobile device interaction.

Introduction
Designing for mobile devices involves dealing with many issues. Mobile Devices
typically have smaller screens, limited input, less processing power, and work on
a battery for a long time. Typically, standard metaphors and ways of development
for desktop applications do not transfer well to mobile devices because they do
not take these issues into account. An open question is if methods for user
interface evaluation from the desktop would work for mobile devices.

Card et al. (1983) introduced GOMS for evaluating user interfaces. A
simplified version was also introduced called the Keystroke-Level Model (Card et
al. 1983). Generating Keystroke-Level Models is straightforward, but takes time,

is repetitive, and can be error-prone. This seemed like a good opportunity for
automation. The tool, KLM-Qt, listens to windowing system events and translates
them into operators for the Keystroke-Level Model.

In order to test out how well KLM-Qt works, an evaluation was done with two
phones that are available under open source licenses, the Trolltech Greenphone
from Trolltech ASA and the Neo1973 from the OpenMoko project. Keystroke-
Level Models were also generated for Apple’s iPhone for the purpose of
comparison and to see how well the Keystroke-Level Model works in general.

In this paper, we first present the problem area. This is followed with a short
background on GOMS, focusing specifically on the Keystroke-Level Model.
There is also an introduction to KLM-Qt and how it works. We then take a look at
the evaluation done on the phones and discuss the results. We conclude with some
suggestions for the KLM-Qt and some recommendations for using the Keystroke-
Level Model in evaluation of mobile devices. The questions we try to answer are,
can methods that originate from desktop machines be used on mobile devices?
Specifically, can the Keystroke-Level Model make the transfer to mobile devices?
And finally, how well does KLM-Qt aid in the generation of the Keystroke-Level
Models?

Problem Area
Software for mobile devices usually shares the same development methods and
languages that are used for desktop software. However, when compared to
desktop application, mobile devices have less processing power, less memory and
storage space, and need to work on battery power. At the same time, an
application should have a good level of usability, being effective, efficient, and
pleasant to use. Finding the right balance between the user’s needs and the
capabilities of the device is a challenge for any interaction designer.

Some methods of evaluation work regardless of the system being used. For
example, O’Hara et al. (2006) had users keep diaries of users’ experiences with
video telephony and their patterns of use. Alsos and Svanæs (2006) used a
scenario of a doctor talking to a patient to evaluate methods of interaction
between a PDA and a patient display.

Another possible method for evaluation is to model users. A model may not be
able to behave exactly like a real user nor be able to give other feedback, but it
may still provide relevant data in many areas. Modeling can be done quickly and
cheaply since it does not involve experts and users. It also makes it possible to
evaluate more ideas. As summarized by Heim (2007), there are two types of
models, predictive or descriptive. A descriptive model provides a framework for
thinking about user interaction and explains how people interact with dynamic
systems. GOMS and the Keystroke-Level Model belong to the area of predictive
models. They attempt to approximate how a user will use an interface.

Background
GOMS stand for Goals, Operators, Methods, and Selectors and was introduced in
Card, Moran, and Newell’s The Psychology of Human-Computer Interaction
(Card et al. 1983). GOMS’s focus is on an expert’s error-free use of an interface.
An expert is someone who knows the task domain well and knows how to
perform all the tasks that need to be done. The expert does not have to look up or
ask for guidance in doing any task. Ideally, the expert makes few, if any,
mistakes. Therefore, GOMS has no built in mechanism for handling mistakes.
Specifically GOMS consists of the user’s goals, (e.g., replacing all occurrences of
“England” with “Britain” in a text editor), the operators and methods used to
achieve the goals, and the selection rules for choosing the correct method when
multiple methods are available for achieving a goal. The result of a GOMS model
is the amount of time it takes for an expert to use the interface.

Since its creation, GOMS has evolved and other versions have spun off from
the original version (later called CMN-GOMS for Card, Moran, Newell). Kieras
(1988) introduced Natural GOMS Language (NGOMSL), which is a formalized
natural language for representing GOMS models. Gary et al. (1993) developed
the Critical Path Model or Cognitive Perceptual Motor version of GOMS (CPM-
GOMS), which can model things happening concurrently.

The Keystroke-Level Model

Another version that was created early on was the Keystroke-Level Model by
Card et al. (1983). Also known as KLM-GOMS or simply KLM, it attempts to
simplify GOMS by ignoring the goals and selectors and instead focuses on the
keystrokes and mouse presses of the expert user. Even though it is simpler than
the other models, it is also very elegant and has been used in a wide variety of
situations, from text editors to a database of outer space operations (John and
Kieras, 1996, pages 307 and 308).

A KLM consists of a stream of operators. There are five operators that most
modern applications are interested in: P, K, H, R(t), and M. These operators are
presented in table I.

Operator Description Time in Seconds
P Pointing with a pointing device 1.10
K Key or button press and release 0.20
H Move from the mouse to keyboard (or back) 0.40

R(t) Waiting for the system to become responsive t
M Mental preparation and thinking time 1.35

Table I: The KLM operators with times determined by Card et al. (1983).

The P operator represents pointing with a pointing device to a position on the
screen, excluding button presses. The K operator represents a pointing device
button press and release or a keyboard key press and applies to a single key. This
value is very dependent on how fast a user can type. The value for a person typing
at 55 words per minute is approximately 0.20 seconds. Points where the hand
moves from the keyboard to the pointing device is represented by the H operator
and is approximately 0.40 seconds for a keyboard and mouse combination. The M
operator represents time spent mentally preparing to execute an operation,
including deciding how to invoke a command, how a command should be
terminated, or which options to choose. Thinking time was originally shown by
Card et al (1983) to be around 1.35 seconds. Olson and Nilsen (1987) have shown
this to be a valid upper bound with their time being around 1.20 seconds.

Finally, there are times when the computer is unresponsive because it is busy
doing some processing, and the user must wait before they can interact with the
system. This is indicated by the R(t) operator where t indicates the time in
seconds that the user has to wait. Most of the operators can be defined by
following the physical movements of the user. The exception is the M operator.
Card et al. (1983) developed a list of heuristics. The heuristics start by adding in
Ms in all the locations where there could be a potential for mental preparation and
then start removing them where they can be eliminated; for example, a click after
pointing is done without any hesitation by expert users.

Introducing KLM-Qt
KLM-Qt works on the assumption that a lot of the information about the
operators that are part of the keystroke-level model (e.g., the key and mouse
presses and mouse movements) can be derived from the events that are delivered
to an interface. Other things, such as hand movement, can be inferred by looking
at the places where a mouse event is followed by a key event or vice-versa.
Therefore, all that is needed is to examine the information when it is delivered to
the application. This also works for mobile devices. The way of interacting may
be different, but the information is the same. If the information is used to derive a
model, it results in a KLM defined for a task the same amount of time it takes to
demonstrate the task in the interface. This can save a lot of time and avoid errors
instead of creating the model by hand.

The M and R(t) operators do not provide their information through system
events nor can they be easily derived. The R(t) operator is difficult to evaluate
because a computer switches from busy to being available again many times in a
second. On mobile phones R(t) is important due to their constrained resources. An
acceptable workaround is to add the operator manually by editing the model.

One solution for M operators is to look at pauses between operators and
determine if an M operator should occur. However, as mentioned above, a user

evaluating an interface with KLM-Qt may not be an expert user of the interface,
so this may result in insertion of more M operators than there should be. KLM-Qt
can place Ms by looking at the time between events, but does not do it by default.
Another approach would be to automatically apply the heuristics mentioned in the
previous section to add the operators, but this requires more information than
KLM-Qt has. Like R(t), the safest option is to place the M operators manually.

KLM-Qt has two parts, a library and the main KLM-Qt application. The
library is linked into the application that is being tested, listens for events, and
sends the information back to the KLM-Qt application. The main KLM-Qt
application providing an overview of all currently running applications that can
be evaluated, allowing a user to select which application they will evaluate, and
controlling the recording.

It is also possible to make alterations to the models after they are generated.
Notes can be added for each individual operator. Operators can also be removed
or added. This is typically done to add M or R(t) operators. When instructed to,
KLM-Qt will go through the model and look for breaks of time that are greater
than a threshold (by default 1.20 seconds, but adjustable in the preferences) and
then inserts an M operator, with a note to indicate that it was placed there by
KLM-Qt. This simplifies the process of inserting Ms and may work in cases
where a real expert is using the system.

KLM-Qt is not the only attempt to automate GOMS model generation.
Examples include: QGOMS (Beard et al. 1996), CATCHI (Baumeister et al.
2000), USAGE (Byrne et al. 1994), GLEAN (Kieras et al. 1995), CRITIQUE
(Hudson et al. 1999), Apex (John et al. 2002), and CogTool (John and Salvucci
2004). CRITIQUE is the most similar in its idea to KLM-Qt, but it uses a toolkit
that is only available on Sun Workstations and is not available to the public.

The Evaluation
The evaluation served as a test of KLM-Qt, and to see how KLM works on
mobile phones. If the models that were generated could be used to draw
conclusions about the interfaces or to find issues that should be addressed in the
evaluation, it would show that the methods could be applied to mobile phones.
We could judge the effectiveness of KLM-Qt by the quality of the models it
generated and the amount of work required using KLM-Qt versus doing the
models by hand.

The phones evaluated were the Trolltech Greenphone, the Neo1973 (also
known as the OpenMoko phone), and the Apple iPhone. The phones are depicted
in figure 1. The iPhone uses its own user interface. The Greenphone and Neo1973
both run Qtopia Phone Edition, an open source platform for mobile phones that is
tailored to handle the specific features of each phone. For example, the Neo1973

uses a touchscreen and stylus for input and has a special onscreen keyboard, while
the Greenphone relies more on the keypad with a predictive T9-like input method.

Figure 1: Trolltech Greenphone from Trolltech ASA, iPhone from Apple, and Neo1973 from FIC.

The evaluation was carried out as part of a group project for a class at the
University of Oslo. The Keystroke-Level Models for the Greenphone and
Neo1973 were constructed using KLM-Qt using the methods explained in the
above section since KLM-Qt can work with Qtopia and manually for the iPhone
since KLM-Qt cannot be used directly on it. The tasks for the phones are
presented in figure 2.

For the iPhone, the models were all generated by hand from blank KLM-Qt
documents. Most of the tasks could be accounted with K operators that originated
from a mouse. For the on-screen keyboard, K operators from the keyboard were
used. To simulate the slide, a combination of KpressPKrelease was used to indicate the
press, slide, and release. Times were not measured precisely for this, but the slide
usually takes about a second. No new timings for the operators were taken;
instead the original timings from Card et al. (1983) were used. None of the tasks
that were tested used “multi-touch” gestures.

Since the Greenphone used the keypad as its primary method of input and the
Neo1973 primarily used a touch screen, some way of representing the how text
was entered was needed. The solution was to introduce a new operator, I, which
would indicate an event from an input method. It would represent both the
composing of the text for entry and the final text that is committed. It would have
been possible to combine multiple I operators into one jumbo operator, but that
would have hidden information about what keys were pressed or how many steps
were executed before the input was confirmed, therefore each “composing”
operator is included.

• Remove the keypad lock.
• Add a contact, “Marius” with

a mobile number.
• Send an SMS with text “Hi”

to a new number.
• Answer an incoming call.
• End a telephone call.
• Add number from the

previous call to a new
contact, “Jo.”

• Call the “Marius” contact
from the address book.

• Change the name of the “Jo”
contact to include a last
name.

• Make the telephone silent.
• Answer the SMS sent to the

phone.

• Set an alarm for tomorrow at
10:00

• Add a picture to a contact
from the library of pictures
included in the phone.

• Dial a number
• Call the most recently called

contact.
• Add a contact as a speed dial.
• Remove the picture from a

contact.
• Add a “Meeting” at 10:00 the

next day in the calendar.
• Check missed calls.
• Delete a contact.
• Activate the keypad lock.

Figure 2: The tasks performed for the second evaluation of the Greenphone, iPhone, and Neo1973.

Results
Testing the telephone functionality was revealing. It seemed that the majority of
the telephone functions worked as expected on all the phones. Dialing a contact,
dialing a phone number, or reading an SMS worked similarly to how it works on
other phones. Writing SMS messages was a little different as it involved dealing
with the messages program that appeared to have been designed for more of an
email-based way of working. It also took extra steps to confirm the person to that
was supposed to be receiving the SMS if you were starting from the messages
program.

Though Neo1973 and the Greenphone used the same software and appeared
that time had been spent making Qtopia more tuned for the Neo1973 with a
special input method and the Neo1973 gave an experience that made it seem to
run faster, the times for doing things were longer than on the Greenphone. Things
like adding contacts, writing SMS messages, or adding a calendar event. This
sometimes took 10 seconds longer than doing it on the Greenphone. Even doing
such things as selecting a contact and calling it took about 40% longer. Part of
this was due to the fact that inputting text was more cumbersome than on the
Greenphone Details of times to complete a task and the number of keystrokes is

shown in table II. Though there is more to the models than just counting
keystrokes, presenting both values here can be useful summary for comparing
among the phones. Keep in mind that the iPhone models are generated by hand,
so the times given are not exact.

Tasks Greenphone iPhone Neo1973
Add a contact 21.022 sec/22

keystrokes
20.150 sec/20

keystrokes
40.018 sec/26

keystrokes
Send an SMS 14.912 sec/14

keystrokes
16.100 sec/10

keystrokes
18.025 sec/11

keystrokes
Add number from

a call
22.240 sec/12

keystrokes
16.600 sec/8
keystrokes

18.868 sec/13
keystrokes

Call a contact 4.921 sec/4
keystrokes

10.600 sec/4
keystrokes

7.988 sec/5
keystrokes

Change contact
name

22.326 sec/28
keystrokes

24.100 sec/16
keystrokes

41.688 sec/16
keystrokes

Answer SMS 23.379 sec/18
keystrokes

11.650 sec/8
keystrokes

17.275 sec/11
keystrokes

Set an alarm 5.677 sec/6
keystrokes

15.850 sec/5
keystrokes

1.000 sec/3
keystrokes

Add picture to
contact

20.326 sec/14
keystrokes

21.600 sec/10
keystrokes

43.364 sec/17
keystrokes

Dial a number 6.915 sec/9
keystrokes

6.200/10
keystrokes

8.556 sec/10
keystrokes

Call most recent 4.958 sec/2
keystrokes

5.300 sec/2
keystrokes

11.483 sec/5
keystrokes

Add contact to
speed dial

9.489 sec/13
keystrokes

13.450 sec/5
keystrokes

10.403 sec/5
keystrokes

Remove contact
picture

25.290 sec/20
keystrokes

13.400 sec/7
keystrokes

17.572 sec/8
keystrokes

Add a meeting 20.980 sec/23
keystrokes

27.500 sec/16
keystrokes

37.419 sec/21
keystrokes

Check missed calls 3.609 sec/2
keystrokes

5.300 sec/2
keystrokes

5.576 sec/3
keystrokes

Delete a contact 9.832 sec/7
keystrokes

17.400 sec/7
keystrokes

9.003 sec/5
keystrokes

Table II: Times and number of keystrokes for select tasks for the phones under evaluation.

Comparing the Keystroke-Level Models that were generated from the iPhone
to the Greenphone or Neo1973 shows a different philosophy on how tasks were
approached. As can be seen in table II, the iPhone won in number of keystrokes
for almost all of the tasks. However, there were some things that worked better on
the Greenphone. For example, the Greenphone could assign a phone number to
speed dial. This meant that hitting a single button, pressing the button would dial
that number. The iPhone and the Neo1973 maintained a list of favorites. After

setting the speed dial, it was very fast to reach this contact on the Greenphone,
and a bit longer on the others, as it meant scanning a list. However, setting a
number as a favorite required fewer keystrokes and could be completed faster on
the iPhone than setting up the speed dial on the Greenphone. Another task where
the Greenphone came out ahead of the iPhone was in setting times. On the
Greenphone, it is possible to just type in the time; on the iPhone, setting a time
involves sliding rollers to get a correct time. In this case, setting an alarm or
creating a meeting was a bit faster on the Greenphone. However, setting times on
the iPhone is less error-prone than the Neo1973.

Certain tasks were simple on all the phones. For example, answering a call,
hanging up on a call, or locking the phone, all had the same amount of
complexity—one button press. Unlocking the phones was similarly
straightforward, either a slide or two key presses. The iPhone had a major
departure from the other two phones with regard to making it silent. The
Greenphone and Neo1973 required going into the settings to activate the “silent”
profile, while the iPhone had a switch on the side to flip. Obviously it was quicker
to switch the iPhone into and out of silent than navigate through to the profile
area and activate a profile. The Greenphone had a slight advantage on pure phone
functionality, owing to the fact that it possessed a keypad for dedicated phone
tasks. This made it easy to dial a number, check missed calls, or call recent
contacts, while on the other phones, required navigation into the specific “phone”
area of the software.

Discussion

The Keystroke-Level Model and Mobile Devices

Even though the Keystroke-Level Model was designed for desktop systems, it
appears to produce models that are useful in evaluating mobile devices and
comparing them. The models help to capture the interaction that goes on with
using a mobile device and can reveal how well or poorly a task is supported on a
device. Having the models also provides a way of comparing the interaction
between two devices and seeing which one allows the quickest way of doing
things. In this situation, where two devices used the same software, it was also
possible to see which design interactions worked the best. This information could
be used to guide choices in what hardware to select.

While the Keystroke-Level Model can transition over to mobile devices in the
abstract sense that the operators map over, it is a bit more difficult to say if that is
the case with the actual values that were originally determined by Card et al.
(1983). Pressing buttons seems to transfer well to the K operator, even when they
are software buttons on the screen pressed by a stylus. The original timing from

Card et al. (1983) of 0.200 for a person typing 50 words a minute seems to be the
average time for pressing buttons on the phones as well. However, some operators
do not make this clear transfer. For example, the P operator is clearly not
necessary on phones that do not have a touch screen, but those that do make it a
bit difficult to apply consistently. On a desktop machine, the mouse dictates the P
operator, since it tracks the movement of the cursor. This cursor movement is not
straightforward on a mobile device. The hand does very little movement and it is
possible to access different points on the screen with different fingers, which
makes the P much faster in those occasions. Perhaps using Fitts’ Law tailored to
each screen could provide better values.

Another example is the H operator. It might mean completely different things
on different devices. On the iPhone, for example, it could be argued that there is
an H operator that happens when clicking on a field that requires text input and
the on-screen keyboard comes up. At these points, users may change to using
their thumbs for typing instead of the pointer finger. This is much different on the
Neo1973 because the user is always using the same pointing device and there is
no perceived difference. The H does not seem to exist on devices like the
Greenphone where the primary mode of interaction is through a keypad, and text
input and navigation are simply a matter of pressing different buttons.

The M operator can be another issue that may need to be addressed. Myung
(2004) claims that the M operator for a mobile phone should be around 570
milliseconds, which is much shorter than the traditional value of 1350
milliseconds. No data was collected to see if this was in fact true. Holleis (2007)
contends that this value is for a very specialized area of use and asserts that the
normal value should be used. Besides trying to find a new time for an M operator,
developing a new set of heuristics that focus more on mobile devices (e.g., taking
into account confirming input) could also be useful.

Even though the K operator works well in most cases of pressing buttons, it
does not transfer well in all cases. In particular when using predictive input
methods, it can require the person to confirm that the text that is entered is
correct. Myung (2004) found that this was the case for Korean input methods.
More work needs to be invested in created a better operator to encapsulate typing
using an input method. The I operator creating introduced for using with KLM-Qt
is not good enough to represent different input methods.

When the evaluation was being run, the decision was made to have the
evaluators sitting at the table and having the phone in their hand. This does not
cover all possible situations of how and when someone uses a mobile phone, but
it covers an adequate subset. Holleis et al., (2007) proposed many new types of
operators that could be used, such as a macro and micro attention shifts (Smacro and
Smicro), distraction (X), an arbitrary action (A(t)), broad gestures (G), finger

movement (F), and initial act (I)1. These suggested operators were not used in our
models, partly because of point in time when the information was discovered and
partly because of the fact that it adds complexity to the models. We were still able
to create models that provide useful information about the number of operators it
requires for completing a task and how long it takes. Adding in the operators from
Holleis et al. would not invalidate the data, but instead provide a deeper
understanding of what is going on.

However, one thing to keep in mind is that the models were generated
differently between the iPhone and the other phones and it could be that the
default times that used for the P and M on the iPhone add more time to the task
than it would really take. Even using these values that are most likely larger than
their actual values, the iPhone is able to accomplish most of its tasks faster than
on the Greenphone or the Neo1974 and with less keystrokes. Of the three phones
tested, the iPhone models showed the phone to be the most efficient phone. This
matches informal opinion about experiences with the devices. Having a better
way of capturing input methods may make it possible to try alternate methods and
see how well they work on a device before time is spent implementing it.

Finally, it is worth considering the limitations in the Keystroke-Level Model
and GOMS itself. The Keystroke-Level is limited to modeling the error-free
execution of expert users. Novice users may have a completely different way of
interaction or the interfaces themselves could be very error-prone. KLM-Qt
cannot provide any information about this. Therefore, it is a good idea to use
other methods, like usability testing, to find out information about these areas, or
to combine them to get a better overall picture.

KLM-Qt and Mobile Devices

KLM-Qt works for generating an initial model of a task. During the evaluation, it
was possible create connect a Greenphone or the Neo1973 and start recording a
model. Once the model was complete, it was just a matter of going back and
adding extra notes for the operators that should be documented. It was also easy
to add or remove operators if it was necessary. It was much faster using KLM-Qt
to generate the model by recording than generating the model by hand. For our
final set of models, we were able to start and complete the whole process in
around 20 minutes. This was compared to spending around two hours when doing
the models by hand. So, the goal of saving time was clearly realized.

When creating the models by hand, going through the task a couple of times
was necessary in order to get each step. After initial models were written, it
usually required going back over the models a couple of times to add in bits that
were missing (like P and M operators). It would have been very helpful to have

1 Not to be confused with the I operator mentioned in the previous paragraph.

had the ability to have captured events from the iPhone to have generated the
models automatically.

It was even useful to have KLM-Qt available for generating the models by
hand. It was able to provide some specialization that is not built in to most
spreadsheet programs. However, it would have been helpful to be able to copy
and paste groups of operators in the model in order to have access to commonly
repeated operations (such as sliding a bar on the iPhone). Of course, KLM-Qt was
primarily targeted as a recorder and not a full-fledged editor.

Recording the events from the device worked well in general, but it could have
been better for capturing the input methods. The new operator, I, helps solve the
problem of including the information in the model, but it also hides information
because it is impossible to know from the event what type of input method
generated the event. In some cases, this is problematic when wanting to compare
different input methods. Some input methods give a good indication of which one
is being used. For example, when looking at the model and seeing that the
“composing text” changing radically as each letter is input, it is a good indication
that it is some type of predictive method. This change in text does not happen
when using an on-screen keyboard.

As mentioned above, the P operator is a bit tricky to track on the mobile
device. However, KLM-Qt would be in a could position to attempt to solve this
issue since it has access to the events. It could look for events where there is
“mouse” release event and record the position. It could then record the new
position on the next press and generate a P event given the time and distance
between the two events. This has a side effect of swallowing M events that
happen between the two events though, but if the time is longer than that for a
normal M an MP could be inserted instead.

The Neo1973 was the most troublesome of the phones. It did generate models
that were usable, but the models contained a lot of noise because the touchscreen
seemed to detect slight movements, which would show up as P operators between
a mouse press and release (KpressPKrelease). The solution was to substitute these
sequences with one K that contained all these operators. Another issue seemed to
be an implementation detail of Qtopia on the Neo1973, the mouse presses would
generate other input events, but both of the events would be reported, so the
models would contain the mouse’s K followed by an I or a keyboard K. Some
work was done to filter out spurious Hs that would be generated this way, but
there were still extra operators. Taking the time of the K and the I would generate
times that are similar for K in table I.

The M operator is another place where the situation could be improved.
Having the ability to look for potential M operators in spaces where there is a
pause between operators is useful and it turns up many M operators at locations
where it might be considered this to happen, such as preparing to input text or
confirming a selection. However, it is also possible to detect false positives. There

are points where the user has to wait for the device to load a dialog and this may
be more than a few seconds. This is over the limit for inserting an M operator and
consequently, an M gets inserted into the model. This is part of the reason why
finding Ms this way is not the default. On the other hand, this can be used as a
way of discovering many of the points where someone has to wait for the device
because it usually results in M operators that are three to four times the standard
duration. It is possible to replace these with an M and R or simply an R.

As mentioned above, the Keystroke-Level Models that were generated from
these evaluations did not deal with certain situations such as getting the device
out of a purse or jacket pocket to answer it. Part of the reason for this was that it
was clumsy to do with the way the phones communicated with KLM-Qt. The
phones use a TCP/IP connection and the Greenphone and Neo1973 only are able
to provide a connection through a USB cable. This cable gets in the way stowing
the phone and could potentially become disconnected. In the future, as more
devices get the ability to do wireless Internet access, it may very well be possible
to use KLM-Qt to model these extra situations as well. It would be interesting to
see how KLM-Qt or simply the Keystroke-Level Model would deal with
situations that are beyond the sitting at a table.

Conclusion
The Keystroke-Level Model works for evaluating the interfaces on the mobile
phones that we tested on. The KLM-Qt tool produced models quickly on the
Greenphone and Neo1973 by recording the operating system events. It also was
helpfully in creating the models for the iPhone by providing more support than
what would be found in a generic spreadsheet application.

There are some issues with both KLM-Qt and the Keystroke-Level Model that
need to be addressed to make them provide better models. Some sort of
adaptation to handle the various input methods that are available on the mobile
phones would be useful. Having a better time for the P and M operators could
also help make more accurate models when doing things by hand. Perhaps taking
some of the operators from Holleis et al. (2007) would be useful in handling some
of these challenges without making new models overly complex.

KLM-Qt would work great for desktop applications, but needs some
adjustments for the events it sees on the mobile phone. It could be more helpful in
determining when the UI blocks and translating that into R(t) events that could
flag problem points a design. KLM-Qt could also try harder to determine when a
P and an M operator occur as well. This might mean giving hints to the model to
help it apply the heuristics originally made by Card et al. (1983).

More research needs to be done to address these issues. However, it appears
that the Keystroke-Level Model is a valid way of evaluating mobile devices and
can be a new tool in building better user interfaces.

References
Alsos, O. A. and Svanæs, D. (2006). “Interaction techniques for using handhelds and PCs together

in a clinical setting,” in NordiCHI ’06: Proceedings of the 4th Nordic conference on Human-
computer interaction, pages 125–134, New York, NY, USA.

Beard, D. V., Smith, D. K., and Denelsbeck, K. M. (1996). “QGOMS: a direct-manipulation tool
for simple GOMS models,” in CHI ’96: Conference companion on Human factors in
computing systems, pages 25–26, New York, NY, USA.

Byrne, M. D., Wood, S. D., Foley, J. D., Kieras, D. E., and Sukaviriya, P. N. (1994).
“Automating interface evaluation,” in CHI ’94: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 232–237, New York, NY, USA.

Card, S. K., Newell, A., and Moran, T. P. (1983). The Psychology of Human-Computer
Interaction. Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA

Gray, W. D., John, B. E., and Atwood, M. E. (1993). “Project Ernestine: Validating a GOMS
analysis for predicting and explaining real-world task performance,” Human-Computer
Interaction, 8(3):237–309.

Heim, S. (2007). The Resonant Interface: HCI Foundations for Interaction Design. Addison
Wesley, Boston, MA, USA

Holleis, P., Otto, F., Hussmann, H., and Schmidt, A. (2007). “Keystroke-level model for
advanced mobile phone interaction,” in CHI ’07: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 1505–1514, New York, NY, USA.

Hudson, S. E., John, B. E., Knudsen, K., and Byrne, M. D. (1999). “A tool for creating predictive
performance models from user interface demonstrations,” in UIST ’99: Proceedings of the
12th annual ACM symposium on User interface software and technology, pages 93–102,
New York, NY, USA.

John, B. E. and Kieras, D. E. (1996). “Using GOMS for user interface design and evaluation:
which technique?” ACM Trans. Comput.-Hum. Interact., 3(4):287–319.

John, B. E., Prevas, K., Salvucci, D. D., and Koedinger, K. (2004). “Predictive human
performance modeling made easy,” in CHI ’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 455–462, New York, NY, USA.

John, B., Vera, A., Matessa, M., Freed, M., and Remington, R. (2002). “Automating CPM-
GOMS,” in CHI ’02: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 147–154, New York, NY, USA.

Kieras, D. E. (1988). “Towards a practical GOMS model methodology for user interface design,”
in The Handbook of Human-Computer Interaction. North-Holland, Amsterdam, 135–158.

Kieras, D. E., Wood, S. D., Abotel, K., and Hornof, A. (1995). “GLEAN: a computer-based tool
for rapid GOMS model usability evaluation of user interface designs,” in UIST ’95:
Proceedings of the 8th annual ACM symposium on User interface and software technology,
pages 91–100, New York, NY, USA.

Myung, R. (2004). “Keystroke-level analysis of Korean text entry methods on mobile phones,”
International Journal of Human-Computer Studies, 60(5-6):545–563.

O’Hara, K., Black, A., and Lipson, M. (2006). “Everyday practices with mobile video telephony,”
in CHI ’06: Proceedings of the SIGCHI conference on Human Factors in computing
systems, pages 871–880, New York, NY, USA.

Olson, J. R. and Nilsen, E. (1987). “Analysis of the cognition involved in spreadsheet software
interaction,” Human-Computer Interaction, 3(4):309–349.

